近年来,随着云计算和物联网概念的提出,信息技术得到了前所未有的发展,而大数据则是在此基础上对现代信息技术革命的又一次颠覆,所以大数据技术主要是从多种巨量的数据中快速的挖掘和获取有价值的信息技术,因而在云时代的今天,大数据技术已经被我们所关注,所以数据挖掘技术成为为关键的技术。尤其是在当前在日常信息关联和处理中越来越离不开数据挖掘技术和信息技术的支持。大数据,而主要是对全球的数据量较大的一个概括,且每年的数据增长速度较快。而数据挖掘,主要是从多种模糊而又随机、大量而又复杂且不规则的数据中,获得有用的信息知识,从数据库中抽丝剥茧、转换分析,从而掌握其潜在价值与规律 。
在数据挖掘过程中,其技术流程主要是以下几点:
首先做好数据准备工作,主要是在挖掘数据之前,就需要对目标数据进行准确的定 位,在寻找和挖掘数据之前,必须知道自身所需的数据类型,才能避免数据挖掘的盲目性,在数据准备时,应根据系统的提示进行操作,在数据库中输入检索条件和目标,对数据信息资源进行分类和清理,以及编辑和预处理。
其次是在数据挖掘过程中,由于目标数据信息已经被预处理,所以就需要在挖掘处理过程中将其正确的应用到管理机制之中,因而数据挖掘的过程十分重要,所以必须加强对其的处理。例如在数据挖掘中,我们可以结合数据挖掘目标要求,针对性的选取科学而又合适的计算和分析方法,对数据信息特征与应用价值等进行寻找和归纳。当然,也可以结合程序应用的需要,对数据区域进行固定,并在固定的数据区域内分类的挖掘数据,从而得到更具深度和内涵以及价值的数据信息资源,并就挖掘到的数据结果进行分析和解释,从结果中将具有使用价值和意义的规律进行提取,并还原成便于理解的数据语言。
后是切实加强管理和计算等专业知识的应用,将数据挖掘技术实施中进行的总结和提取所获得的数据信息与评估结果在现实之中应用,从而对某个思想、决策是否正确和科学进行判断,终体现出数据挖掘及时的应用价值。
北京理工大学大数据搜索与挖掘实验室张华平主任研发的NLPIR大数据语义智能分析技术是对语法、词法和语义的综合应用。NLPIR大数据语义智能分析平台平台是根据中文数据挖掘的综合需求,融合了网络精准采集、自然语言理解、文本挖掘和语义搜索的研究成果,并针对互联网内容处理的全技术链条的共享开发平台。
其中KGB(Knowledge Graph Builder)知识图谱引擎是我们自主研发的知识图谱构建与推理引擎,基于汉语词法分析的基础上,采用KGB语法实现了实时的知识生成,可以从非结构化文本中抽取各类知识,并实现了从表格中抽取指定的内容等。KGB同时可以定义不同的动作,如抽取动作,并能自定义各类后处理程序。利用KGB知识图谱引擎可以抽取到产品的详细报价信息,方便进行下一步的数据挖掘与图谱构建。
数据挖掘技术及其应用是目前国际上的一个研究热点,并在许多行业中得到了很好的应用,尤其是在市场营销中获得了成功,初步体现了其优越性和发展潜力。在信息管理领域,综合应用数据挖掘技术和人工智能技术,获取用户知识、文献知识等各类知识,将是实现知识检索和知识管理发展的必经之路。
NLPIR智能平台KGB知识图谱引擎数据挖掘的驱动
北京其他商务服务相关信息
3小时前
4小时前
9小时前
10小时前
10小时前
11小时前
11小时前
11小时前
12小时前