数形结合思想在教师考试中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合。应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决.运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征。
案例探究
教师资格考试之数形结合思想
教师资格考试之数形结合思想教师资格考试之数形结合思想
锦囊妙计
应用数形结合的思想,应注意以下数与形的转化:
(1)集合的运算及韦恩图;
(2)函数及其图象;
(3)数列通项及求和公式的函数特征及函数图象;
(4)方程(多指二元方程)及方程的曲线;
以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.
以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.
牛刀小试
教师资格考试之数形结合思想教师资格考试之数形结合思想
更多北京教师考试信息请访问北京教师考试网http://bj.z***/html/2017/xkzs_1109/12039.html