很多同学依靠题海战术,希望多做题来应对多变的考题,然而凭借题海战术仍然难以获得科学的思维方式,以至收效甚微。这个时候你就需要通过解题思维能力的锻炼来进行改变。so,快来数学加看看数学解题思维能力到底应该怎么炼成吧!
一、从求解(证)入手
从求解(证)入手——寻找解题途径的基本方法
遇到有一定难度的考题我们会发现出题者设置了种种障碍。从已知出发,岔路众多,顺推下去越做越复杂,难得到答案,如果从问题入手,寻找要想获得所求,必须要做什么,找到“需知”后,将“需知”作为新的问题,直到与“已知“所能获得的“可知”相沟通,将问题解决。
事实上,在不等式证明中采用的“分析法”就是这种思维的充分体现,我们将这种思维称为“逆向思维”——必要性思维。
二、数学式子变形
数学式子变形——完成解题过程的关键
解答高考数学试题遇到的第二障碍就是数学式子变形。一道数学综合题,要想完成从已知到结论的过程,必须经过大量的数学式子变形,而这些变形仅靠大量的做题过程是无法真正完全掌握的。
数学解题的每一步推理和运算,实质都是转换(变形).但是,转换(变形)的目的是更好更快的解题,所以变形的方向必定是化繁为简,化抽象为具体,化未知为已知,也就是创造条件向有利于解题的方向转化.还必须注意的是,一切转换必须是等价的,否则解答将出现错误。
三、回归课本---夯实基础
1)揭示规律----掌握解题方法
中考试题再难也逃不了课本揭示的思维方法及规律。我们说回归课本,不是简单的梳理知识点。课本中定理,公式推证的过程就蕴含着重要的方法,而很多同学没有发觉其内在思维的规律就去解题,而希望通过题海战术去“悟”出某些道理,结果是题海没少泡,却总也不见成效,因此我们要侧重基本概念,基本理论的剖析,达到以不变应万变。
2)构建网络----融会贯通
在课本函数这章里,有很多重要结论,许多学生由于理解不深入,只靠死记硬背,后造成记忆不牢,考试时失分。
在数学加www.shux***让孩子成倍提高学习效率的秘密